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Effects of colored noise on stochastic resonance in a bistable system subject
to multiplicative and additive noise
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The effects of colored noise on stochastic resonance~SR! in a bistable system driven by multiplicative
colored noise and additive white noise and a periodic signal are studied by using the unified colored noise
approximation and the theory of signal-to-noise ratio~SNR! in the adiabatic limit. In the case of no correlations
between noises, there is an optimal noise intensities ratioR at which SNR is a maximum that identifies the
characteristics of the SR when the correlation timet of the multiplicative colored noise is small. However,
whent is increased, a second optimal value ofR appears, and two peaks appear in the SNR simultaneously.
In the case of correlations between noises, the SNR is not only dependent on the correlation timet, but also
on the intensity of correlations between noises. Moreover, the double peak phenomenon can also appear ast
is increased in certain situations.
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I. INTRODUCTION

Since stochastic resonance~SR! was proposed to explain
the periodic recurrences of the earth’s ice ages@1,2#, the
phenomenon has been extensively studied from both the
oretical and experimental points of view@3–7#. SR is a name
coined for the rather counterintuitive fact that the respons
a nonlinear system to a periodic signal may be enhan
through the addition of an optimal amount of noise.

There have been many theoretical developments of S
conventional bistable systems@8–20#. McNamara, Wiesen-
feld and Roy@8,9# have suggested a master equation for
populations in two stable states. They considered the sig
to-noise ratio~SNR!, i.e., the ratio of thed peak height in the
power spectrum to the noise background as a probe of the
effect. Zhou, Moss, and Jung@14# have suggested the esca
time distribution to describe SR. Jung and Ha¨nggi @15# de-
scribed SR within the framework of nonstationary stocha
processes without restriction to small driving amplitudes
frequencies, where they presented power spectral dens
and signal amplification as measures of SR.

The largest amount of work about the SR phenome
has referred to the consideration of systems with just
noise source. However, many physical systems require
sidering various noise sources. Moreover, in certain sit
tions noises may be correlated with each other. Recently
SR phenomenon in a conventional bistable system unde
simultaneous action of multiplicative and additive noise a
a periodic signal has been discussed by using the theor
SNR in Ref.@21#. It should be pointed out that the multipl
cative noise and additive noise are all assumed as w
Gaussian noise in Ref.@21#. However, more realistic model
of physical systems require considering the case of colo
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†Mailing address.
1063-651X/2001/63~3!/031107~8!/$15.00 63 0311
e-

of
d

in

e
al-

R

c
r
ies

n
e
n-
-

he
he
d
of

ite

d

noise, especially the stochastic system driven by white Ga
sain noise and colored noise. This situation is generic fo
variety of physical situations, for example, the biologic
transport that works in the presence of white thermal no
and correlated random noise of biological origin, and t
dynamics of a dye laser, etc. Therefore, it is very import
to study the effects of colored noise on the SR phenome
of nonlinear systems. In this paper, we will use the theory
SNR proposed by McNamara and Wiesenfeld@9# to study
the effects of colored noise on the SR in conventio
bistable systems under the simultaneous action of a mult
cative colored noise and an additive white noise and a p
odic signal.

According to the theory of Ref.@9#, the bistable case is
reduced to a two-state system, characterized by the occ
tion probabilitiesn65prob(x5x6) of both stable statesx6 .
The master equation for these occupation probabilities is

ṅ152ṅ25W2~ t !n22W1~ t !n1

5W2~ t !2@W2~ t !1W1~ t !#n1 , ~1!

whereW6 is the transition rate out of stable statesx6 . To
obtain an expression of SNR in terms of the output sig
power spectrum, the key problem is to calculate the tran
tion rate. It must be stressed that the expression for the t
sition rate would be valid only in theadiabatic limit, so this
theory of SNR is also called the adiabatic approximation.
order to keep our results’ validity throughout this paper,
will also restrict ourselves to the case of the adiabatic lim
On the other hand, different theories have been used to
with the colored noise problem, for instance, the conv
tional small-t theory @22#, the functional calculus theory o
Fox @23#, the decoupling theory~often called the Ha¨nggi
ansatz! @24#, the unified colored noise approximatio
©2001 The American Physical Society07-1
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~UCNA! @25#, etc. Here we will apply the UCNA to stud
the effects of colored noise on the SNR. Because the UC
is valid for both small and large correlation times of t
colored noise@25#, our results are valid in a large region o
thet value. In Sec. II the general theory of nonlinear syst
driven by multiplicative colored noise and additive whi
noise is given by using the UCNA. Considering conventio
bistable system, we study the effects of colored noise on
SNR for two cases: the case of no correlations betw
noises and the case of correlations between noises in Sec
We end with conclusions in Sec. IV.

II. GENERAL THEORY OF COLORED NOISE

Let us consider the overdamped motion of a Brown
particle in a potentialU0(x) that has two stable statesx6 and
an unstable statexu , the stochastic system under the sim
taneous action of multiplicative colored noise and addit
white noise is described by the Langevin equation

ẋ5 f ~x!1g~x!e~ t !1h~ t !, ~2!

where f (x)52U08(x) and

^e~ t !&50, ^e~ t !e~s!&5
Q

t
expS ut2su

t D , ~3!

^h~ t !&50, ^h~ t !h~s!&52Dd~ t2s!, ~4!

Q andt denote the intensity and the correlation time of t
multiplicative Gaussian colored noisee(t), and D denotes
the intensity of the additive Gaussian white noiseh(t).

The one-dimensional non-Markovian process~2! with
Eqs. ~3! and ~4! is stochastically equivalent to two
dimensional Markovian processes

ẋ5 f ~x!1g~x!e~ t !1h~ t !, ~5!

ė52
1

t
e1

1

t
j~ t !, ~6!

wherej(t) is another Gaussian white noise with^j(t)&50
and ^j(t)j(s)&52Qd(t2s). Applying the UCNA to two-
dimensional Markovian processes~5! and~6!, one can obtain
the following one-dimensional Markovian approximatio
@25,26#:

ẋ5C21~x,t!@ f ~x!1g~x!j~ t !1h~ t !#, ~7!

where

C~x,t!512tS f 8~x!2
g8~x!

g~x!
f ~x! D , ~8!

the prime denotes differentiation with respect tox. Then the
Fokker-Planck equation corresponding to Eq.~7! can be read
as
03110
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]P~x,t !

]t
52

]

]x
A~x,t!P~x,t !1

]2

]x2
B~x,t!P~x,t ! ~9!

with

A~x,t!5
f ~x!

C~x,t!
1

K8~x!

C2~x,t!
2

C8~x,t!K~x!

C3~x,t!
,

B~x,t!5
K~x!

C2~x,t!
, ~10!

where the state-dependent functionK(x) is also dependen
on either correlations or no correlations between the no
j(t) andh(t). Whenj(t) is correlated withh(t) according
to ^h(t)j(s)&5^j(t)h(s)&52lAQDd(t2s), wherel de-
notes the strength of the correlations betweenj(t) andh(t),
and ulu<1 , thenK(x) becomes

K~x,l!5Qg2~x!12lAQDg~x!1D

5D@Rg2~x!12lARg~x!11#, ~11!

R[Q/D is the ratio of noise intensities. The stationary pro
ability distributionPs(x) of Eq. ~9! is

Ps~x!5
N

uDe f f~x,t,l!u1/2
expS 2

F~x,t,l!

D D , ~12!

where the effective diffusionDe f f(x,t,l) and the general-
ized potentialF(x,t,l) are given by

De f f~x,t,l!5
K~x,l!

C2~x,t!
,

F~x,t,l!52DE f ~x!C~x,t!

K~x,l!
dx. ~13!

The mean first passage time~MFPT! T6 of the processx(t)
to reach the statex7 with initial condition x(t50)5x6 is
given by the Kramers time whenD!1 @27–30#

T652puU09~x6!U09~xu!u21/2

3expFF~xu ,t,l!2F~x6 ,t,l!

D G . ~14!

Then, one can obtain the transition ratesW6 out of x6 ac-
cording toW65T 6

21 @9#.

III. EFFECTS OF COLORED NOISE ON STOCHASTIC
RESONANCE

Now considerU0(x) is a conventional symmetric bistabl
potential, and assume that the system Eq.~2! is driven by a
periodic signal~or periodic forcing!, then the dimensionles
form of the Langevin equation for this system can be read
7-2
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ẋ5x2x31xe~ t !1A cosVt1h~ t !, ~15!

where the statistical properties of the noisese(t) and h(t)
are given by Eqs.~3! and ~4!, A is the amplitude, andV is
the frequency of the periodic signal.

In the absence of the periodic signal, the determinis
potential of the bistable system isU0(x)52x2/21x4/4,
which has two stable statesx2521, x1511 and an un-
stable statexu50. In the presence of the periodic signal, t
potential of the system is modulated by the signal. Howev
it is assumed@9# that the signal amplitude is small enoug
~i.e.,A!1) that, in the absence of any noise, it is insufficie
to force a particle to move from one well to the other and
can be considered thatx6561 andxu50 are still the stable
states and unstable state of the system. Moreover, the v
tion of the periodic signal is slow enough~i.e., V!1 or in
the adiabatic limit! that there is enough time to make th
system reach local equilibrium in the period of 1/V. There-
fore, one can obtain the quasi-steady-state distribution fu
tion of the system in the adiabatic limit. In order to discu
the effects of colored noise on the stochastic resonance,
cases of the correlation between noises will be consider

A. The case oflÄ0

When there is no correlation betweenj(t) andh(t) ~i.e.,
l50) andV!1 ~the adiabatic limit!, the quasi-steady-stat
distribution functionPs(x,t) of system can be written as

Ps~x,t !5
N

uDe f f~x,t,l50,t !u1/2
expF2

F~x,t,l50,t !

D G ,
~16!

and the generalized potentialF(x,t,l50,t) can be ex-
pressed as

F~x,t,l50,t !5
t

2R
x42

2t12tR2R

2R2
x2

1
2t1~2t21!R2R2

2R3
lnuRx211u

1S 2
t

R
x1

t2Rt2R

RAR
arctanARxD

3A cosVt1O~A2!, ~17!

where the signal amplitude is very small~i.e. A!1). The
MFPT T6 of the processx(t) to reach the statex7 with
initial condition x(t50)5x6 is given by Eq.~14!, thus the
transition ratesW6 out of x6 are approximately

W6.
1

A2p
expH 2

1

D F2
t

2R
1

2t12Rt2R

2R2

2
2t1~2t21!R2R2

2R3
lnuR11u

6S t

R
2

t2Rt2R

RAR
arctanARD A cosVtG J . ~18!
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Within the framework of the theory of SNR@9#, we can
obtain the standard form of the signal-to-noise ratioRSNR for
the bistable system with no correlations between noise
terms of the output signal power spectrum,

RSNR5
pW0A2

4D2 S t

R
2

t2Rt2R

RAR
arctanARD 2

3F12
W0

2A2

2D2~W0
21V2!

3S t

R
2

t2Rt2R

RAR
arctanARD 2G21

, ~19!

where

W05
A2

p
expH 2

1

D F2
t

2R
1

2t12Rt2R

2R2

2
2t1~2t21!R2R2

2R3
lnuR11uG J . ~20!

By virtue of the expression@Eq. ~19!# of SNR, the effects
of colored noise on SNR can be discussed by numer
computation. In Fig. 1 we present the SNR as a function
the noise intensities ratioR([Q/D) for different values of
correlation timet of the colored noise. Whent50 ~the case
of white noise! and t is small, there is a maximum in th
SNR at the moderate value of the noise intensities ratioR. It
means that there is an optimal ratio of noise intensities
which the SNR of the system is a maximum~i.e., there is one
peak! that identifies as characteristic of the SR phenomen

FIG. 1. SNR for the case of no correlations between noises
function of the noise intensities ratioR for different values of the
correlation timet of the colored noise.A50.05, V50.001, and
D50.05.
7-3
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we can call this phenomenon assingle stochastic resonanc
~SSR!. The largest amount of previous investigations ab
SR has referred to the SSR phenomenon. The peak o
SNR increases on increasing the correlation time. Howe
when the correlation time is increased, a second peak app
at a smaller value of the noise intensities ratioR, and the
peak becomes high as the correlation time increases. It
been shown that, when the multiplicative noise is Gauss
colored noise, there can be two optimal values of the no
intensities ratio, that is, there are two peaks in the SNR
which the stochastic resonance occurs, so we may call
phenomenon asdouble stochastic resonance~DSR!. Al-
though a similar phenomenon has been shown in Refs.@9#
and @21#, where this phenomenon appears for a sufficien
low frequency of the input signal@9# and for the increasing
amplitude of the input signal@21#, respectively, yet for the
increasing correlation timet of the multiplicative colored
noise here. Moreover, the first peak is very broad and low
Refs. @9,12#. Another interesting point here is that, whenR
→0, the SNR decreases but saturates to a plateau v
however, the signal-to-noise ratio will vanish whenR→`.

B. The case oflÅ0

In the presence of the correlations betweenj(t) andh(t)
~i.e., lÞ0), when the signal frequency is very low (V!1)
and the signal amplitude is very small (A!1), the quasi-
steady-state distribution functionPs(x,t) of the system can
be written as

Ps~x,t !5
N

uDe f f~x,t,l,t !u1/2
expF2

F~x,t,l,t !

D G , ~21!

where the generalized potentialF(x,t,l,t) can be expresse
as

F~x,t,l,t !5
t

2R
x42

4tl

3RAR
x31a~t,l!x21b~t,l!x

1g~t,l!lnuRx212lARx11u

1u~t,l!arctan
ARx1l

A12l2

1S 2
t

R
x1

lt

RAR
lnuRx212lARx11u

2m~t,l!arctan
ARx1l

A12l2 D A cosVt

1O~A2! for ulu,1, ~22!

and
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F~x,t,61,t !5
t

2R
x47

4t

3RAR
x31a~t,61!x21b~t,61!x

1g~t,61!lnuRx262ARx11u6
k~t!

ARx61

1S 2
t

R
x6

t

RAR
lnuRx262ARx11u

1
r~t!

ARx61
D A cosVt1O~A2! for l561,

~23!

with

a~t,l!5
2t~4l221!2R~2t21!

2R2
, ~24!

b~t,l!5
2l@4t~122l2!1R~2t21!#

R2AR
, ~25!

g~t,l!5
2t~16l4212l211!2R~2t21!~4l221!2R2

2R3
,

~26!

u~t,l!5
l

A12l2

3
R21R~2t21!~4l223!22t~16l4220l215!

R3
,

~27!

m~t,l!5
1

A12l2

t~2l221!1R~t11!

RAR
, ~28!

k~t!5
2t2R~2t21!2R2

R3
, r~t!5

t1R~t11!

RAR
.

~29!

From Eqs. ~24!–~28!, it can be seen thata(t,2l)
5a(t,l), b(t,2l)52b(t,l), g(t,2l)5g(t,l), u(t,
2l)52u(t,l), andm(t,2l)5m(t,l).

The transition rateW„x(t50)5x6 ,t,l… out of the x6

states can be approximately obtained from Eq.~14! since
W(x6 ,t,l)5T 6

21 ,
7-4
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W~x6 ,t,ulu,1!.
1

A2p
expX2

1

D F2
t

2R
6

4tl

3RAR
2a~t,l!7b~t,l!2g~t,l!lnuR62lAR11u

2u~t,l!S arctan
l6AR

A12l2
2arctan

l

A12l2D 6H t

R
7

tl

RAR
lnuR62lAR11u

6m~t,l!S arctan
l6AR

A12l2
2arctan

l

A12l2D J A cosVtGC, ~30!
rm
W~x6 ,t,l511!.
1

A2p
expH 2

1

D F2
t

2R
6

4t

3RAR

2a~t,11!7b~t,11!2g~t,11!

3 lnuR62AR11u6
ARk~t!

16AR

6S t

R
7

t

RAR
lnuR62AR11u

1
ARr~t!

16AR
D A cosVtG J , ~31!

W~x6 ,t,l521!.
1

A2p
expH 2

1

D F2
t

2R
7

4t

3RAR

2a~t,21!7b~t,21!2g~t,21!

3 lnuR72AR11u7
ARk~t!

17AR

6S t

R
6

t

RAR
lnuR72AR11u

1
ARr~t!

17AR
D A cosVtG J . ~32!

The standard form of the signal-to-noise ratioRSNR for
the bistable system with correlations between noises in te
of the output signal power spectrum can be given by

RSNR5
pW1

2~x6 ,l!

4W0~x6 ,l! F12
W1

2~x6 ,l!

2@W0
2~x6 ,l!1V2#

G21

,

~33!

whereW0(x6 ,l) andW1(x6 ,l) are the following.
~i! For ulu,1,
03110
s

W0~x6 ,l!5
A2

p
expH 2

1

D F2
t

2R
6

4tl

3RAR
2a~t,l!

7b~t,l!2g~t,l!lnuR62lAR11u2u~t,l!

3S arctan
l6AR

A12l2
2arctan

l

A12l2D G J , ~34!

W1~x6 ,l!5
W0~x6 ,l!A

D F t

R
7

tl

RAR
lnuR62lAR11u

6m~t,l!S arctan
l6AR

A12l2
2arctan

l

A12l2D G .

~35!

~ii ! For l511,

W0~x6 ,11!5
A2

p
expH 2

1

D F2
t

2R
6

4t

3RAR
2a~t,11!

7b~t,11!2g~t,11!lnuR62AR11u

6
k~t!AR

16AR
G J , ~36!

W1~x6 ,11!5
W0~x6 ,11!A

D F t

R
7

t

RAR
lnuR62AR11u

1
r~t!AR

16AR
G . ~37!

~iii ! For l521,

W0~x6 ,21!5
A2

p
expH 2

1

D F2
t

2R
7

4t

3RAR
2a~t,21!

7b~t,21!2g~t,21!lnuR72AR11u

7
k~t!AR

17AR
G J , ~38!
7-5
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W1~x6 ,21!5
W0~x6 ,21!A

D F t

R
6

t

RAR
lnuR72AR11u

1
r~t!AR

17AR
G . ~39!

Although the effects of correlation between noises on
SR phenomenon have been discussed in Ref.@21#, yet the
multiplicative noise and the additive noise are all wh
noises there, and the effects of colored noise on SR have
been studied. On the other hand, becausea(t,l) andg(t,l)
are symmetric functions of the correlation intensityl @i.e.,
a(t,2l)5a(t,l), g(t,2l)5g(t,l)#, and b(t,l) and
u(t,l) are antisymmetric functions of the correlation inte
sity l @i.e., b(t,2l)52b(t,l) andu(t,2l)52u(t,l)#,
it can be found that~i! when ulu,1, the SNR forx(t50)
5x1 andl.0 is equal to that forx(t50)5x2 andl,0;
the SNR forx(t50)5x2 andl.0 is equal to that forx(t
50)5x1 and l,0. ~ii ! When ulu51, the SNR forx(t
50)5x1 andl511 is equal to that forx(t50)5x2 and
l521, and the SNR forx(t50)5x2 andl511 is equal
to that forx(t50)5x1 andl521. Therefore, we can jus
discuss the effects of colored noise on the SNR for the
lowing four cases: the case ofx(t50)5x1 and l,0, the
case ofx(t50)5x1 andl.0, the case ofx(t50)5x1 and
l511, and the case ofx(t50)5x2 andl511 since there
are some inherent symmetries on the SNR as mentio
above.

For the case ofx(t50)5x1 and l,0 @or x(t50)5x2

and l.0#, we present the SNR as a function of the no
intensities ratioR[Q/D for different values of correlation
time t of the colored noise in Fig. 2. It is found that, whe
R.1 ~or Q.D), there is only one peak in the SNR~i.e., the
SSR phenomenon! for a small value of correlation timet,

FIG. 2. SNR for the case of correlations between noises~the
case ofulu,1) with l520.7 as a function of the noise intensitie
ratio R for different values of the correlation timet of the colored
noise.A50.05, V50.001, andD50.05.
03110
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and the DSR phenomenon~i.e., there are two peaks in th
SNR! will appear ast increases. It should be pointed out th
the two peaks are located in the region ofR.1. WhenR
,1 ~or Q,D), the SNR increases but saturates to a plat
value asR decreases, and there is no peak in this regi
However, for the case ofx(t50)5x1 and l.0 @or x(t
50)5x1 andl,0#, it is shown in Fig. 3 that there is on
peak in the SNR in the region ofR.1, and a second pea
will appear in the region ofR,1 as the correlation time o
colored noise is increased. WhenR→0, the SNR decrease
but saturates to a plateau value, and the signal-to-noise

FIG. 3. SNR for the case of correlations between noises~the
case ofulu,1) with l510.7 as a function of the noise intensitie
ratio R for different values of the correlation timet of the colored
noise.A50.05, V50.001, andD50.05.

FIG. 4. When the noise intensities ratioR is fixed, R51; SNR
for the case of correlations between noises~the case ofulu,1) as a
function of the correlative intensityl for different values of the
correlation timet of the colored noise.A50.05, V50.001, and
D50.05.
7-6
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vanishes whenR→`. In Figs. 4 and 5 we present the SN
as a function of noise correlative intensityl for the different
values of correlation timet and for the different values o
noise intensities ratioR, respectively. There is a peak for
large value of correlation time~e.g., t50.7 in Fig. 4!, it
means that there is an optimal correlative intensity at wh
the SR phenomenon can occur. When correlation time
fixed ~e.g., see Fig. 5,t50.7), our computation shows tha
the SR phenomenon can occur for a different value ofR,
and the SNR decreases but saturates to a plateau v
asl→11.

FIG. 5. When the correlation timet of the colored noise is
fixed, t50.7; SNR for the case of correlations between noises~the
case of ulu,1) as a function of the correlative intensityl for
different values of the noise intensities ratioR. A50.05, V
50.001, andD50.05.

FIG. 6. SNR for the case of correlations between noises@the
case ofl511 andx(t50)5x1# as a function of the noise inten
sities ratioR for different values of the correlation timet of the
colored noise.A50.05, V50.001, andD50.05.
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For the case ofx(t50)5x1 and l511 @or x(t50)
5x2 andl521#, in Fig. 6 we present the SNR as a fun
tion of the noise intensities ratioR for different values of
correlation timet. Whent50 ~the case of white noise! and
t is small, there is one peak that is located in the region
R.1. As the correlation timet is increased, a second pea
appears in the region ofR,1, and the DSR appears as th
correlation time increases. The SNR decreases but satu
to a plateau value asR→0, and vanishes asR→`. For the
case ofx(t50)5x2 and l511 @or x(t50)5x1 and l
511#, the SNR as a function of the noise intensities ratioR
for different values of correlation timet is presented in Fig.
7. WhenR,1, our computation shows that there is no pe
in the SNR @see Fig. 7~a!#, it increases but saturates to
plateau value asR→0, the value of the SNR is very sma

FIG. 7. SNR for the case of correlations between noises@the
case ofl511 andx(t50)5x2# as a function of the noise inten
sities ratioR for different values of the correlation timet of the
colored noise.A50.001, V50.001, andD50.085. ~a! R,1 or
Q,D, ~b! R.1 or Q.D.
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~of the order of 1026) and it decreases as the correlation tim
t is increased. However, whenR.1 there is one peak fo
different t values over a very narrow range inR @see Fig.
7~b!#, the value of the SNR is very large~of the order of 105)
and the SNR increases as the correlation timet is increased.
There is a large variation in the value of the SNR peak o
a very narrow range int. Moreover, it should be pointed ou
that there is no DSR phenomenon forR.1.

IV. CONCLUSIONS

In this paper, we have discussed the effects of colo
noise on the SR in conventional bistable systems by us
the theory of SNR@9#. First of all, the general equations o
nonlinear systems under the simultaneous action of mult
cative colored noise and additive white noise are derived
applying the unified colored noise approximation@25#. Sec-
ond, considering the conventional bistable system additio
the action of a periodic signal, we study the SR phenome
in the bistable system and two cases have been consid
one is the case of no correlations between noises and
other is the case of correlations between noises. The exp
sions of the SNR for both cases have been obtained. Th
the effects of the colored noise on the SR phenomenon h
been discussed through numerical computation. It is fo
that, in the case of no correlations between noises, there
optimal noise intensities ratioR at which SNR is maximum
s

ol-
at
.
d

tt

.
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~one peak! that identifies a characteristic of the SR pheno
enon when the correlation timet is small. However, when
the correlation time is increased, a second optimal value
the noise intensities ratio appears, i.e., there are two pea
the SNR that has been calleddouble stochastic resonanc
~i.e., DSR!. Although a similar DSR phenomenon has be
shown in Refs.@9# and@21#, yet this phenomenon appears f
the increasing correlation timet of the multiplicative colored
noise here.

In the case of correlations between noises, the SNR is
only dependent on the correlation time of the colored no
but also on the intensityl of correlations between noises
When ulu,1 and l511 with x(t50)5x1 @or l521
with x(t50)5x2#, the DSR appears as the correlation tim
is increased. However, whenl511 with x(t50)5x2 @or
l521 with x(t50)5x1#, there is no DSR phenomenon
When the noise intensities ratio is fixed, there is an optim
correlative intensity where the SSR occurs. When the co
lation time of colored noise is fixed, the SSR phenomen
can occur for different values of the noise intensities rati
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